Termination w.r.t. Q of the following Term Rewriting System could not be shown:

Q restricted rewrite system:
The TRS R consists of the following rules:

zeroscons(0, n__zeros)
U11(tt, L) → s(length(activate(L)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__length(V1)) → isNatList(activate(V1))
isNat(n__s(V1)) → isNat(activate(V1))
isNatIList(V) → isNatList(activate(V))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatList(activate(V2)))
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(activate(L)), n__isNat(N)), activate(L))
zerosn__zeros
0n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
isNatIList(X) → n__isNatIList(X)
niln__nil
isNatList(X) → n__isNatList(X)
isNat(X) → n__isNat(X)
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__isNatIList(X)) → isNatIList(X)
activate(n__nil) → nil
activate(n__isNatList(X)) → isNatList(X)
activate(n__isNat(X)) → isNat(X)
activate(X) → X

Q is empty.


QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

zeroscons(0, n__zeros)
U11(tt, L) → s(length(activate(L)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__length(V1)) → isNatList(activate(V1))
isNat(n__s(V1)) → isNat(activate(V1))
isNatIList(V) → isNatList(activate(V))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatList(activate(V2)))
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(activate(L)), n__isNat(N)), activate(L))
zerosn__zeros
0n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
isNatIList(X) → n__isNatIList(X)
niln__nil
isNatList(X) → n__isNatList(X)
isNat(X) → n__isNat(X)
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__isNatIList(X)) → isNatIList(X)
activate(n__nil) → nil
activate(n__isNatList(X)) → isNatList(X)
activate(n__isNat(X)) → isNat(X)
activate(X) → X

Q is empty.

Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

ISNATILIST(n__cons(V1, V2)) → ISNAT(activate(V1))
ISNATILIST(V) → ACTIVATE(V)
ISNAT(n__length(V1)) → ISNATLIST(activate(V1))
ISNATILIST(n__cons(V1, V2)) → ACTIVATE(V2)
ISNATILIST(n__cons(V1, V2)) → AND(isNat(activate(V1)), n__isNatIList(activate(V2)))
ACTIVATE(n__isNatList(X)) → ISNATLIST(X)
ACTIVATE(n__0) → 01
ISNATILIST(V) → ISNATLIST(activate(V))
ISNATILIST(n__cons(V1, V2)) → ACTIVATE(V1)
ACTIVATE(n__cons(X1, X2)) → CONS(X1, X2)
LENGTH(cons(N, L)) → U111(and(isNatList(activate(L)), n__isNat(N)), activate(L))
U111(tt, L) → ACTIVATE(L)
ACTIVATE(n__zeros) → ZEROS
LENGTH(nil) → 01
ACTIVATE(n__length(X)) → LENGTH(X)
ISNATLIST(n__cons(V1, V2)) → ACTIVATE(V1)
LENGTH(cons(N, L)) → ACTIVATE(L)
ACTIVATE(n__nil) → NIL
ISNAT(n__s(V1)) → ISNAT(activate(V1))
U111(tt, L) → LENGTH(activate(L))
ACTIVATE(n__s(X)) → S(X)
ISNAT(n__s(V1)) → ACTIVATE(V1)
AND(tt, X) → ACTIVATE(X)
LENGTH(cons(N, L)) → ISNATLIST(activate(L))
ISNATLIST(n__cons(V1, V2)) → ISNAT(activate(V1))
ACTIVATE(n__isNat(X)) → ISNAT(X)
ISNATLIST(n__cons(V1, V2)) → AND(isNat(activate(V1)), n__isNatList(activate(V2)))
U111(tt, L) → S(length(activate(L)))
ACTIVATE(n__isNatIList(X)) → ISNATILIST(X)
ZEROSCONS(0, n__zeros)
ISNATLIST(n__cons(V1, V2)) → ACTIVATE(V2)
ISNAT(n__length(V1)) → ACTIVATE(V1)
ZEROS01
LENGTH(cons(N, L)) → AND(isNatList(activate(L)), n__isNat(N))

The TRS R consists of the following rules:

zeroscons(0, n__zeros)
U11(tt, L) → s(length(activate(L)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__length(V1)) → isNatList(activate(V1))
isNat(n__s(V1)) → isNat(activate(V1))
isNatIList(V) → isNatList(activate(V))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatList(activate(V2)))
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(activate(L)), n__isNat(N)), activate(L))
zerosn__zeros
0n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
isNatIList(X) → n__isNatIList(X)
niln__nil
isNatList(X) → n__isNatList(X)
isNat(X) → n__isNat(X)
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__isNatIList(X)) → isNatIList(X)
activate(n__nil) → nil
activate(n__isNatList(X)) → isNatList(X)
activate(n__isNat(X)) → isNat(X)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

ISNATILIST(n__cons(V1, V2)) → ISNAT(activate(V1))
ISNATILIST(V) → ACTIVATE(V)
ISNAT(n__length(V1)) → ISNATLIST(activate(V1))
ISNATILIST(n__cons(V1, V2)) → ACTIVATE(V2)
ISNATILIST(n__cons(V1, V2)) → AND(isNat(activate(V1)), n__isNatIList(activate(V2)))
ACTIVATE(n__isNatList(X)) → ISNATLIST(X)
ACTIVATE(n__0) → 01
ISNATILIST(V) → ISNATLIST(activate(V))
ISNATILIST(n__cons(V1, V2)) → ACTIVATE(V1)
ACTIVATE(n__cons(X1, X2)) → CONS(X1, X2)
LENGTH(cons(N, L)) → U111(and(isNatList(activate(L)), n__isNat(N)), activate(L))
U111(tt, L) → ACTIVATE(L)
ACTIVATE(n__zeros) → ZEROS
LENGTH(nil) → 01
ACTIVATE(n__length(X)) → LENGTH(X)
ISNATLIST(n__cons(V1, V2)) → ACTIVATE(V1)
LENGTH(cons(N, L)) → ACTIVATE(L)
ACTIVATE(n__nil) → NIL
ISNAT(n__s(V1)) → ISNAT(activate(V1))
U111(tt, L) → LENGTH(activate(L))
ACTIVATE(n__s(X)) → S(X)
ISNAT(n__s(V1)) → ACTIVATE(V1)
AND(tt, X) → ACTIVATE(X)
LENGTH(cons(N, L)) → ISNATLIST(activate(L))
ISNATLIST(n__cons(V1, V2)) → ISNAT(activate(V1))
ACTIVATE(n__isNat(X)) → ISNAT(X)
ISNATLIST(n__cons(V1, V2)) → AND(isNat(activate(V1)), n__isNatList(activate(V2)))
U111(tt, L) → S(length(activate(L)))
ACTIVATE(n__isNatIList(X)) → ISNATILIST(X)
ZEROSCONS(0, n__zeros)
ISNATLIST(n__cons(V1, V2)) → ACTIVATE(V2)
ISNAT(n__length(V1)) → ACTIVATE(V1)
ZEROS01
LENGTH(cons(N, L)) → AND(isNatList(activate(L)), n__isNat(N))

The TRS R consists of the following rules:

zeroscons(0, n__zeros)
U11(tt, L) → s(length(activate(L)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__length(V1)) → isNatList(activate(V1))
isNat(n__s(V1)) → isNat(activate(V1))
isNatIList(V) → isNatList(activate(V))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatList(activate(V2)))
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(activate(L)), n__isNat(N)), activate(L))
zerosn__zeros
0n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
isNatIList(X) → n__isNatIList(X)
niln__nil
isNatList(X) → n__isNatList(X)
isNat(X) → n__isNat(X)
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__isNatIList(X)) → isNatIList(X)
activate(n__nil) → nil
activate(n__isNatList(X)) → isNatList(X)
activate(n__isNat(X)) → isNat(X)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 9 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
QDP
          ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

ISNATILIST(n__cons(V1, V2)) → ISNAT(activate(V1))
ISNATILIST(V) → ACTIVATE(V)
ISNAT(n__length(V1)) → ISNATLIST(activate(V1))
ISNATILIST(n__cons(V1, V2)) → ACTIVATE(V2)
ISNATILIST(n__cons(V1, V2)) → AND(isNat(activate(V1)), n__isNatIList(activate(V2)))
ACTIVATE(n__isNatList(X)) → ISNATLIST(X)
ISNATILIST(V) → ISNATLIST(activate(V))
ISNATILIST(n__cons(V1, V2)) → ACTIVATE(V1)
LENGTH(cons(N, L)) → U111(and(isNatList(activate(L)), n__isNat(N)), activate(L))
U111(tt, L) → ACTIVATE(L)
ISNATLIST(n__cons(V1, V2)) → ACTIVATE(V1)
ACTIVATE(n__length(X)) → LENGTH(X)
LENGTH(cons(N, L)) → ACTIVATE(L)
U111(tt, L) → LENGTH(activate(L))
ISNAT(n__s(V1)) → ISNAT(activate(V1))
AND(tt, X) → ACTIVATE(X)
ISNAT(n__s(V1)) → ACTIVATE(V1)
LENGTH(cons(N, L)) → ISNATLIST(activate(L))
ISNATLIST(n__cons(V1, V2)) → ISNAT(activate(V1))
ACTIVATE(n__isNat(X)) → ISNAT(X)
ISNATLIST(n__cons(V1, V2)) → AND(isNat(activate(V1)), n__isNatList(activate(V2)))
ACTIVATE(n__isNatIList(X)) → ISNATILIST(X)
ISNATLIST(n__cons(V1, V2)) → ACTIVATE(V2)
ISNAT(n__length(V1)) → ACTIVATE(V1)
LENGTH(cons(N, L)) → AND(isNatList(activate(L)), n__isNat(N))

The TRS R consists of the following rules:

zeroscons(0, n__zeros)
U11(tt, L) → s(length(activate(L)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__length(V1)) → isNatList(activate(V1))
isNat(n__s(V1)) → isNat(activate(V1))
isNatIList(V) → isNatList(activate(V))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatList(activate(V2)))
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(activate(L)), n__isNat(N)), activate(L))
zerosn__zeros
0n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
isNatIList(X) → n__isNatIList(X)
niln__nil
isNatList(X) → n__isNatList(X)
isNat(X) → n__isNat(X)
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__isNatIList(X)) → isNatIList(X)
activate(n__nil) → nil
activate(n__isNatList(X)) → isNatList(X)
activate(n__isNat(X)) → isNat(X)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


ISNATILIST(n__cons(V1, V2)) → ISNAT(activate(V1))
ISNATILIST(V) → ACTIVATE(V)
ISNATILIST(n__cons(V1, V2)) → ACTIVATE(V2)
ISNATILIST(V) → ISNATLIST(activate(V))
ISNATILIST(n__cons(V1, V2)) → ACTIVATE(V1)
The remaining pairs can at least be oriented weakly.

ISNAT(n__length(V1)) → ISNATLIST(activate(V1))
ISNATILIST(n__cons(V1, V2)) → AND(isNat(activate(V1)), n__isNatIList(activate(V2)))
ACTIVATE(n__isNatList(X)) → ISNATLIST(X)
LENGTH(cons(N, L)) → U111(and(isNatList(activate(L)), n__isNat(N)), activate(L))
U111(tt, L) → ACTIVATE(L)
ISNATLIST(n__cons(V1, V2)) → ACTIVATE(V1)
ACTIVATE(n__length(X)) → LENGTH(X)
LENGTH(cons(N, L)) → ACTIVATE(L)
U111(tt, L) → LENGTH(activate(L))
ISNAT(n__s(V1)) → ISNAT(activate(V1))
AND(tt, X) → ACTIVATE(X)
ISNAT(n__s(V1)) → ACTIVATE(V1)
LENGTH(cons(N, L)) → ISNATLIST(activate(L))
ISNATLIST(n__cons(V1, V2)) → ISNAT(activate(V1))
ACTIVATE(n__isNat(X)) → ISNAT(X)
ISNATLIST(n__cons(V1, V2)) → AND(isNat(activate(V1)), n__isNatList(activate(V2)))
ACTIVATE(n__isNatIList(X)) → ISNATILIST(X)
ISNATLIST(n__cons(V1, V2)) → ACTIVATE(V2)
ISNAT(n__length(V1)) → ACTIVATE(V1)
LENGTH(cons(N, L)) → AND(isNatList(activate(L)), n__isNat(N))
Used ordering: Polynomial interpretation [25,35]:

POL(n__isNat(x1)) = x_1   
POL(ISNATILIST(x1)) = 2 + (4)x_1   
POL(activate(x1)) = x_1   
POL(n__s(x1)) = (2)x_1   
POL(and(x1, x2)) = x_2   
POL(n__nil) = 0   
POL(ISNATLIST(x1)) = (1/4)x_1   
POL(tt) = 0   
POL(U111(x1, x2)) = x_2   
POL(isNatList(x1)) = (1/4)x_1   
POL(AND(x1, x2)) = x_2   
POL(zeros) = 0   
POL(isNatIList(x1)) = 2 + (4)x_1   
POL(s(x1)) = (2)x_1   
POL(isNat(x1)) = x_1   
POL(nil) = 0   
POL(ACTIVATE(x1)) = x_1   
POL(LENGTH(x1)) = (1/4)x_1   
POL(n__isNatIList(x1)) = 2 + (4)x_1   
POL(n__length(x1)) = (2)x_1   
POL(n__zeros) = 0   
POL(n__isNatList(x1)) = (1/4)x_1   
POL(n__cons(x1, x2)) = (4)x_1 + (4)x_2   
POL(U11(x1, x2)) = (4)x_2   
POL(0) = 0   
POL(ISNAT(x1)) = (1/2)x_1   
POL(cons(x1, x2)) = (4)x_1 + (4)x_2   
POL(n__0) = 0   
POL(length(x1)) = (2)x_1   
The value of delta used in the strict ordering is 2.
The following usable rules [17] were oriented:

activate(X) → X
zeroscons(0, n__zeros)
isNat(n__0) → tt
U11(tt, L) → s(length(activate(L)))
isNatIList(n__zeros) → tt
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(activate(L)), n__isNat(N)), activate(L))
isNatList(n__nil) → tt
s(X) → n__s(X)
length(X) → n__length(X)
0n__0
zerosn__zeros
isNatList(X) → n__isNatList(X)
niln__nil
isNatIList(X) → n__isNatIList(X)
cons(X1, X2) → n__cons(X1, X2)
activate(n__length(X)) → length(X)
activate(n__0) → 0
activate(n__zeros) → zeros
isNat(X) → n__isNat(X)
activate(n__nil) → nil
isNatList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatList(activate(V2)))
isNatIList(V) → isNatList(activate(V))
activate(n__isNat(X)) → isNat(X)
isNat(n__s(V1)) → isNat(activate(V1))
and(tt, X) → activate(X)
isNatIList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
activate(n__isNatIList(X)) → isNatIList(X)
activate(n__isNatList(X)) → isNatList(X)
isNat(n__length(V1)) → isNatList(activate(V1))
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__s(X)) → s(X)



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ QDPOrderProof
QDP

Q DP problem:
The TRS P consists of the following rules:

ISNAT(n__length(V1)) → ISNATLIST(activate(V1))
ISNATLIST(n__cons(V1, V2)) → ACTIVATE(V1)
ACTIVATE(n__length(X)) → LENGTH(X)
LENGTH(cons(N, L)) → ACTIVATE(L)
U111(tt, L) → LENGTH(activate(L))
ISNAT(n__s(V1)) → ISNAT(activate(V1))
AND(tt, X) → ACTIVATE(X)
ISNAT(n__s(V1)) → ACTIVATE(V1)
LENGTH(cons(N, L)) → ISNATLIST(activate(L))
ISNATLIST(n__cons(V1, V2)) → ISNAT(activate(V1))
ISNATILIST(n__cons(V1, V2)) → AND(isNat(activate(V1)), n__isNatIList(activate(V2)))
ACTIVATE(n__isNatList(X)) → ISNATLIST(X)
ACTIVATE(n__isNat(X)) → ISNAT(X)
ISNATLIST(n__cons(V1, V2)) → AND(isNat(activate(V1)), n__isNatList(activate(V2)))
ACTIVATE(n__isNatIList(X)) → ISNATILIST(X)
LENGTH(cons(N, L)) → U111(and(isNatList(activate(L)), n__isNat(N)), activate(L))
ISNATLIST(n__cons(V1, V2)) → ACTIVATE(V2)
U111(tt, L) → ACTIVATE(L)
ISNAT(n__length(V1)) → ACTIVATE(V1)
LENGTH(cons(N, L)) → AND(isNatList(activate(L)), n__isNat(N))

The TRS R consists of the following rules:

zeroscons(0, n__zeros)
U11(tt, L) → s(length(activate(L)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__length(V1)) → isNatList(activate(V1))
isNat(n__s(V1)) → isNat(activate(V1))
isNatIList(V) → isNatList(activate(V))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatList(activate(V2)))
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(activate(L)), n__isNat(N)), activate(L))
zerosn__zeros
0n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
isNatIList(X) → n__isNatIList(X)
niln__nil
isNatList(X) → n__isNatList(X)
isNat(X) → n__isNat(X)
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__isNatIList(X)) → isNatIList(X)
activate(n__nil) → nil
activate(n__isNatList(X)) → isNatList(X)
activate(n__isNat(X)) → isNat(X)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.